The application of non-traditional stable isotope systems such as Mg, Si, S, K, Ca, Ti, V, Cr, Fe, Ni and Se in geochemistry, cosmochemistry and life sciences has been spurred by the advancement of the multi-collector ICP-MS (MC-ICPMS) over the last two decades. This versatile technique, although widely considered as the standard method for the high precision isotopic analysis of such systems, is limited by the molecular species generated by the argon ICP ion source which cause significant interferences on the mass spectrum of these elements. These molecular species can interfere directly with the atomic ions of the same nominal mass, leading to inaccurate isotope ratio determination. A typical solution is to use the high-resolution capabilities of MC-ICP-MS to resolve or partially resolve the isotopes of interest from their respective interferences, but at the cost of significantly reduced ion transmission. Furthermore, analysis of certain isotopes such as 40Ca is not possible on the traditional MC-ICP-MS instruments, as the 40Ar interference cannot be resolved.